A New Approach for Vehicle Routing with Stochastic Demand: Combining Route Assignment with Process Flexibility

Sep 17 2021 - 1pm


Hanzhang Qin



Abstract: We propose a new approach for the vehicle routing problem with stochastic demands for the case in which customer demands are revealed before vehicles are dispatched. Our approach combines ideas from vehicle routing and manufacturing process flexibility to propose overlapped routing strategies with customer sharing. We characterize the asymptotic performance of the overlapped routing strategies under probabilistic analysis. Using the characterization, we demonstrate that our overlapped routing strategies perform close to the theoretical lower-bound derived from the reoptimization strategy, and significantly outperform the routing strategy without overlapped routes. The effectiveness of the proposed overlapped routing strategies in non-asymptotic regimes is further verified through numerical analysis.


Bio: Hanzhang Qin is a Ph.D. candidate in Computational Science and Engineering under supervision of Professor David Simchi-Levi. He is affiliated with Laboratory for Information & Decision Systems and Center for Computational Science & Engineering at MIT. He holds two master's, one in EECS and one in Transportation both from MIT. Prior to attending MIT, Hanzhang received two bachelor degrees in Industrial Engineering and Mathematics from Tsinghua University, where he was advised by Professor Hai Jiang and Professor Liping Zhang for his undergraduate theses.